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Abstract. This study explores the viability of parameter estimation in4

the comprehensive general circulation model ECHAM6 using ensemble Kalman5

filter data assimilation techniques. Four closure parameters of the cumulus-6

convection scheme are estimated using increasingly less-idealized scenarios7

ranging from perfect-model experiments to the assimilation of conventional8

observations. Updated parameter values from experiments with real obser-9

vations are used to assess the error of the model state on short, 6 hour fore-10

casts, and on climatological timescales.11
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All parameters converge to their default values in single parameter perfect-12

model experiments. Estimating parameters simultaneously has a neutral ef-13

fect but applying an imperfect model deteriorates the assimilation perfor-14

mance. With real observations, single parameter estimation generates the de-15

fault parameter value in one case, convergence to different parameter val-16

ues in two cases and diverges in the fourth case. The implementation of the17

two converging parameters influences the model state: While the estimated18

parameter values lead to an overall error reduction on short timescales, the19

error of the model state increases on climatological timescales.20
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1. Estimating parameters for fast processes in a climate model

Current state-of-the-art climate models are truncated at fairly coarse spatial resolutions,21

typically of the order of 100 km. Many atmospheric processes with significant impacts22

on the large-scale state, including precipitation formation, radiative transfer, turbulence,23

and convection occur at much smaller scales. In truncated models these processes must24

be represented by so-called “parameterizations”, statistical formulations that determine25

the impact of these processes on the large-scale state in terms of the state itself.26

Parameterizations require closure parameters. The optimal values of these parameters,27

which may depend on the model’s spatial and temporal resolution [Tiedtke, 1989], are de-28

termined during model “tuning”, usually by adjusting parameters so that the mean model29

state matches climatological observations as closely as possible [Randall and Wielicki,30

1997; Mauritsen et al., 2012]. The choice of parameter values plays an important role in31

climate prediction scenarios since it is parameters, rather than initial conditions, which32

determine the model’s climate [Murphy et al., 2004]. Model tuning is thus a necessary33

but subjective and arbitrary process in the development of a climate model.34

Model tuning, as normally performed, has several disadvantages. The iterative pro-35

cess of modifying a parameter value, running a climate simulation, comparing the model36

output to observations, and readjusting the parameter value is both computationally37

expensive and labour-intensive. The time is usually spent by central members of the38

model-development team since finding an optimal parameter set requires deep knowledge39

of the model and its parameterizations. The process is also somewhat arbitrary. Tuning40

is normally guided by a subjectively chosen set of parameters and targets, i.e. features of41
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the climate system, on which the model is calibrated. But tuning need not lead to unique42

parameter choices if the target can be reached by adjusting more than one parameter,43

i.e. if several cloud closure parameters impact the radiation budget. Moreover, the best44

climate state may well be achieved by compensating errors in different processes rather45

than by best simulating a certain physical process.46

A variety of more systematic approaches to tuning has been explored. One brute-force47

possibility is to systematically explore the parameter space in sensitivity experiments48

[Allen, 1999; Knutti et al., 2002; Murphy et al., 2004; Klocke et al., 2011] although this is49

computationally expensive even for a modest number of free parameters. The parameter50

space can be explored more selectively using for example Monte Carlo Markov chains51

[MCMC; Jackson et al., 2008; Järvinen et al., 2010]. Both of these techniques, like tradi-52

tional tuning methods, use metrics related to climatological agreement with observations.53

But many of the parameters normally adjusted during tuning are related to fast processes54

such as convection and radiation. This suggests that model sensitivity to these parameters55

should be evident even in very short integrations such as those used in numerical weather56

prediction (NWP) [Rodwell and Palmer, 2007].57

NWP relies on data assimilation, an optimal blending of prior information (usually58

short-term forecasts) with observations, to produce optimal initial conditions for subse-59

quent forecasts. Assimilation can be naturally extended to simultaneous estimation of60

state and parameter values. Parameters can be estimated using “state space augmenta-61

tion” [Derber, 1989; Anderson, 2001; Norris et al., 2007], i.e. by extending the state vector62

to include the desired parameters which are then updated along with the physical state.63

Ensemble methods such as the ensemble Kalman filter (EnKF) due to Evensen [2003] are64
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particularly alluring for parameter estimation because covariances are sampled from the65

ensemble and don’t need be specified.66

Simultaneous parameter and state estimation has yielded promising results in low order67

models [Anderson, 2001; Annan and Hargreaves, 2004] and in simplified primitive equation68

atmospheric global models [Annan et al., 2005]. The technique has also been applied to69

a limited-domain NWP model of operational complexity [MM5; Aksoy et al., 2006b].70

Better parameter estimates can lead to better models: Hu et al. [2010] estimated two71

parameters of a boundary layer scheme and the updated parameter values led to reduced72

model errors. But the greatest successes have been in simplified settings. Aksoy et al.73

[2006a]; Tong and Xue [2008] show that estimating several parameters simultaneously74

often degrades the estimation performance of the individual parameters.75

In the present study, we apply sequential data assimilation techniques to a climate76

model ensemble to estimate four closure parameters of the cumulus-convection scheme.77

We focus on cloud and convection parameters for several reasons: a) they are important78

for the representation of weather and climate; b) those parameters remain very uncertain79

and are often used to adjust a models’ weather or climate to best fit observations; c)80

cloud processes act on timescales short enough to potentially yield a successful parameter81

estimation; d) the response of clouds to an external forcing is a large contributor to the82

uncertainty in estimates of climate sensitivity [Soden and Held, 2006; Bony et al., 2006];83

Here we present a series of experiments with decreasing degrees of idealization, from84

experiments with synthetic observations on a homogeneous observation network assuming85

a perfect-forecast model, to real observations and a consequently imperfect model (Table86

1). This hierarchical approach demonstrates first that the observations we assimilate87
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inform the parameters we try to estimate on short timescales. By moving incrementally88

towards the real world the possibilities of parameter estimations in GCMs are highlighted,89

but also instructive limitations are demonstrated when those concepts are transferred to90

imperfect models and incomplete observations.91

Section 2 introduces the methodology and the model employed in this study. In the92

following section, perfect-model experiments with single parameter estimation are used to93

develop a potentially successful data assimilation setup and to demonstrate the validity94

of the approach. We add complexity incrementally, first by simultaneously estimating95

multiple parameters and then by introducing imperfection to the forecast model in section96

4. Experiments with real observations are described in section 5 and the performance of97

the updated parameter values is assessed in short forecasts and climatological model runs98

in section 6 before we end with a summary of the results and a conclusion.99

2. A climate model making short forecasts

We use the climate model ECHAM6 [Stevens et al., 2012] with a horizontal triangular100

truncation T31 and 19 vertical levels on prescribed sea surface temperatures (SST) and101

sea ice concentration (SIC). The model is run in NWP mode, by initializing short forecasts102

with analysis of the atmospheric state. The initial conditions for each forecast are created103

with the Data Assimilation Research Testbed [DART; Anderson et al., 2009], developed104

at the National Center for Atmospheric Research (NCAR). We apply the ensemble ad-105

justment Kalman filter [EAKF; Anderson, 2001] to a 90 member ensemble.106

The parameters to be estimated are included in the model’s state vector together with107

physical state variables (see next chapter). In order to compensate for model- and sam-108

pling error we inflate all elements of the augmented state vector using spatially and tem-109
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porally varying adaptive inflation [Anderson, 2007, 2009] and impose a minimum ensemble110

spread for the parameters. Observations are assimilated four times per day aggregated111

in 6 hour intervals centered at 0000, 0600, 1200 and 1800 UTC. We use a covariance112

localization scheme introduced by Gaspari and Cohn [1999] applied in both the horizontal113

and vertical with a localization half-width of 0.2 rad for the observations and parameters.114

The physical part of the state vector comprises the state variables temperature T ,

horizontal wind speeds U and V , and specific humidity q. Since the tracer q is a positive

definite variable, we transform q (in kg kg−1) using

q̂ = ln(q) + α · q (1)

with q̂ being the transformed quantity. The transformation has the advantage that q is115

still bounded on the lower side via log(q) whereas the linear term dominates for bigger116

values and keeps the distribution roughly Gaussian rather than log-normal. Two other117

attempts to transform q did not yield satisfactory results: A simple log-transformation118

imports the tendency to generate unrealistic large values of q which can lead to a model119

crash; a transformation based on q̂ = tan(q) [Hu et al., 2010] has the advantage of being120

bounded on two sides but the model did not run stably in test experiments.121

2.1. Estimated cloud related parameters

We examine four closure parameters in the cumulus-convection scheme, which we choose122

in part because the parameter-related processes operate on short timescales. These par-123

ticular parameters are also known to strongly influence either the model’s climate skill or124

its climate sensitivity [Klocke et al., 2011] and are routinely adjusted during model tuning125

[Mauritsen et al., 2012]. Table 1 shows the estimated parameters which Tiedtke [1989]126
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introduced in the mass-flux scheme applied in our model for cumulus convection. The127

default values for the used model configuration and a range of parameter values as used128

in different model configurations is given.129

All closure parameters are transformed to log-space to avoid possible negative values130

during the assimilation [Annan et al., 2005a; Tong and Xue, 2008]. Since the Kalman filter131

assumes Gaussian distributed values of the parameters, they are initialized using a log-132

normal distribution, which then becomes a Gaussian distribution after the transformation133

to log-space.134

The entrainment-controling parameters ǫs and ǫp control how much ambient air is mixed135

into a shallow or deep convective cloud, respectively, and hence influence the cloud’s136

dilution: A high value of entrainment rate imports much surrounding dry air and leads137

to weaker convection associated with a small vertical extent of the convective plume.138

Physically, a higher value of ǫs increases the entrainment into a shallow convective cloud139

leading to an increase in cloud water content and generates more stratiform clouds below140

the inversion. Parameter β gives the fraction of upward moving airmass which overshoots141

the top of a shallow convective cloud, once it has reached its level of neutral buoyancy142

and parameter γ describes the conversion rate of liquid water to rain in convective clouds.143

Both parameters ǫs and β are related to the same process and influence how strongly the144

boundary layer communicates with the free troposphere across the inversion. Parameter145

ǫs controls the amount of moist air that reaches the inversion and parameter β transports146

a fraction of the convective airmass across the inversion into the next model level. In147

all experiments we omit all a priori knowledge and allow the parameters to evolve freely148

independent of the remaining parameter values.149
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Unlike conventional state variables in ECHAM6, parameters are usually applied as150

global constant scalars and need to be treated differently by using the ’spatial updating’151

method [Aksoy et al., 2006b]. Each ensemble member’s scalar parameter is expanded to a152

horizontally uniform 2D array and spatially updated, yielding a varying posterior field of153

parameter values. We then feed the spatially weighted global mean back into the model154

and continue the iterative cycle with the updated prior.155

3. Perfect-model experiments

We use perfect-model experiments, sometimes called “observing system simulation ex-156

periments” (OSSE) [Atlas, 1997], as a testbed to find a suitable assimilation setup and157

to explore the individual parameter’s sensitivity for a successful parameter estimation.158

The goal of these idealized experiments is to assess whether the available observations are159

correlated with the parameters to be estimated, so that also real observations potentially160

constrain the parameters.161

In perfect-model experiments the numerical model is assumed to be perfect in a sense162

that no model error exists, i.e. a certain set of initial conditions always leads to the163

same result. Given this assumption, a model run provides a perfect representation of the164

evolution of the atmosphere. The model is integrated in time and, at constant intervals,165

the model state is used to generate synthetic observations. As the true state of the166

model is known, assimilating synthetic observations provides the opportunity to assess167

the assimilation’s performance.168

Two sets of perfect-model experiments are performed. The first uses a dense, globally169

homogeneous distribution of observations (10368 grid cells composed of 9 vertical levels, 24170

latitudinal and 48 longitudinal grid-points) allowing for a maximum correlation between171
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observations and elements of the state vector. The second uses a realistic observation172

network, identical to the one later used with real observations. Synthetic observations are173

generated in 6-hour intervals for January 2008 for each observation network. The synthetic174

observations consist of the horizontal wind speed components U and V , temperature T175

and specific humidity q. Observational errors for the idealized observation network are176

constant in space and time with 10 m s−1 for both wind components, 10 K for temperature177

and 2 in log space for specific humidity. For the realistic observation network, we adopt178

the error specifications of the real observations (for more details see section 5).179

For test purposes we conducted experiments with modified observational errors and a180

different amount of observations, but results were less satisfying in these settings. Re-181

ducing the observational error or increasing the amount of available observations leads182

to a rapid reduction of the distribution spread in the parameter evolution. A collapsed183

distribution can ultimately lead to filter divergence, i.e. the prior is too confident so184

that observations are ignored to a large extent making state and parameter estimation185

impossible.186

3.1. Synthetic observations on an idealized observation network

In a most idealized approach (see Figure 1) we estimate each cloud closure parameter187

in separate perfect-model runs over a period of 30 days, shown in Figure 2(a-d). The solid188

lines represent the distribution mean and the dashed lines show the distribution width,189

covering the range of two standard deviations (2σ).190

Initial ensemble members for each parameter were drawn from three different specified191

distributions to assess the impact of the prior ensembles on the robustness of the parameter192

estimation. The initial mean is chosen such that the different cases clearly exceed the193
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expert range (Table 1). Each initial distribution spread contains the default parameter194

value which was set in the run to generate the synthetic observations.195

The assimilated observations provide a strong constraint on entrainment-related param-196

eters and a moderate constraint on the buoyancy and microphysical parameters. Closure197

parameters ǫp and ǫs in figures 2(a, b) reach a stable state after about 15 days and converge198

to their default values for all three prior distributions. Closure parameter β in Figure 2(c)199

also converges, however slower compared to the entrainment rate parameters.200

The evolution of conversion rate parameter γ in Figure 2(d) shows a more diverse201

behavior depending on its initial parameter distribution. The case in which the mean is202

initialized below the default value converges entirely, whereas the two cases with larger203

initial mean values exhibit a clear tendency towards the default value but without reaching204

a stable state after the experiment period of 30 days. One possible reason is, that the first205

order effect of changes in γ is on precipitation rates. We do not assimilate observations206

of precipitation, which explains the that this parameter is not well constrained in our207

experiments.208

The faster the distribution mean approaches the default value the smaller the distribu-209

tion width becomes. Most obvious examples are parameter ǫp in Figure 2(b), retaining210

only a tiny fraction of its initial spread at the end of the experiment (corresponding to211

the imposed minimum spread), and parameter γ in Figure 2(d) showing a bigger distance212

to the default value combined with a larger parameter spread.213

3.2. Synthetic observations on a realistic observation network

We repeat the previous experiments but using both the observation network and error214

specifications used in the next section. Using a realistic observation network produces215
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qualitatively similar results as experiments with an idealized observation network (com-216

pare Figure 2 and 3). Parameters ǫs, ǫp and β converge to the default value for all chosen217

initial parameter distributions. However, the rates of convergence differ slightly among218

the parameters, especially two cases of ǫp converge at a slower rate to the default value.219

Parameter γ also exhibits a slower convergence rate in one case, without reaching the220

default value during the experiment, and estimation is not successful if initialized with a221

distribution far above the default value. Even though a perfect model is utilized, experi-222

ments with parameter γ show that an entirely successful estimation of closure parameters223

depends on properties of the observation network such as the spatial distribution of ob-224

servations and the specified observational error.225

Overall, the results suggest that the observations assimilated here can constrain the es-226

timated parameters and that parameter settings for climate simulations can be recovered227

by optimizing cloud related processes for short forecasts. Both entrainment parameters228

and the mass flux parameter can be estimated more robustly than conversion-rate param-229

eter γ. This is not surprising as the other parameters have a more direct control on the230

thermodynamic state of the atmosphere. In fact, ǫp has the largest control on the skill231

of the simulated climate [Klocke et al., 2011], while also being effectively constrained by232

short weather forecasts.233

4. Adding complexity

We take small steps towards estimating parameters with real observations to be able234

to understand the final results which can not be verified. We use two setups (Figure235

1): In a first approach we add complexity by estimating all four parameters simultane-236

ously, but still operate in the perfect-model setup using the realistic observation network237
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(see section 3.2). The second experiment type imitates model deficiency in the forecast238

model. We compare these two experimental setups with the parameter evolution in the239

perfect-world setting from the previous section 3.2, in which parameters are estimated240

individually. The three experiment types assimilate identical synthetic observations on a241

realistic observation network and are plotted in Figure 4.242

4.1. Estimating parameters simultaneously

All parameters converge to their default values in the perfect model when estimated243

one at a time as well as when estimated simultaneously (Figure 4, blue and grey lines).244

The rate of parameter convergence is slightly affected when estimated together with other245

parameters. No difference between the two model setups is observed for parameter ǫs in246

Figure 4(a), whereas ǫp and γ reach a stable state even faster when all four parameters247

are estimated at the same time. Parameter β converges slightly slower in the multiple248

parameter estimation than when estimated alone. In contrast to the experience of Aksoy249

et al. [2006a] and Tong and Xue [2008] the success of the parameter estimation does250

not suffer, when increasing the number of estimated parameters. However, we note that251

estimating parameters simultaneously increases the potential of unstable model states252

which lead to model crashes. This behaviour is strongly dependent on the choice of initial253

parameter distributions.254

4.2. Imperfect models

In a second experiment type we introduce model imperfectness by setting the gas con-255

stant R to 15 J mol−1 K−1 (rather than 8.31 J mol−1 K−1) and gravity g to 6.0 m s−2
256

(rather than 9.81 m s−2). Both changes have relatively little impact on the models perfor-257
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mance on short and long timescales. In this experiment all four parameters are estimated258

simultaneously. Compared to the previous experiments with a perfect model, estimation259

performance is degraded when employing an imperfect model. All parameters still show260

a tendency of convergence but distant from the truth. This is to be expected as effects of261

the altered gravity and gas constant on the short forecasts are compensated for by altering262

the parameters, to still achieve the best fit to the synthetic observations from the default263

model configuration.264

In the case of multiple parameter estimation in an imperfect-model setup, we can explain265

the joint behavior of parameters ǫs and β by taking their physical relationships into266

account. Both parameters control the communication between the boundary layer and267

the free troposphere across the inversion and are related to the same process. Since we268

assimilate synthetic observations, the amount of mass flux across the inversion is given269

by the combination of the default parameter values of ǫs and β. The lack of convergence270

to the ’true’ value when parameters are estimated simultaneously in the imperfect-model271

setup can be explained by compensating effects. Similar compensating relations between272

the remaining parameters and, secondly, the introduction of an imperfect model lead to273

parameter convergence distant from the truth.274

These findings remind us to be cautious when confronting the incomplete climate model275

with the real world and interpreting the results. We can not expect a single universally276

applicable value for the parameters, but the best fit of a certain model configuration to the277

observations at hand. To achieve the best fit to observations we ask the parameterizations278

to compensate for missing processes, or structural errors in the model.279

4.3. Which observations inform the parameters?
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Since parameters β and γ show a weak estimation robustness in perfect-model exper-280

iments, we analyze the parameter’s sensitivity to different observation quantities using281

the idealized observation network. Examining the assimilation performance we seek the282

degree to which each observation quantity constrains the individual parameters.283

For parameters β and γ we perform experiments corresponding to the four available284

observation quantities U , V , T and q, which are exclusively assimilated in separate runs. In285

order to compare results, the initial parameter distributions are identical in each parameter286

case.287

Parameter β shows sensitivity to all observation quantities but assimilation of specific288

humidity leads to the best and temperature to the least optimal results (Figure 5(a)).289

Furthermore, we find that assimilating only specific humidity leads to a better result than290

using all observation quantities, by comparison to Figure 2(c).291

Figure 5(b) shows that parameter γ is mostly constrained by U and q. The sensitivity292

of γ to V appears to be low, leading to a slightly increasing evolution of the distribution293

mean and a growing distribution spread in this case. Using T as the only observation294

leads to a strongly diverging mean and increasing spread, implying that γ and T are295

entirely uncorrelated. We suggest that an uncorrelated estimation of a single bounded296

quantity results in a growing upper tail on the unbounded side of the distribution. We297

therefore observe a statistical artifact rather than a substantial and envisaged increase of298

the distribution mean and spread.299

5. Parameter estimation using real observations

The previous experiments demonstrate that the observations available to us can, at300

least in principle, constrain the parameters we seek to estimate to some degree. Here we301
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turn to the practical task of estimation using real observations, against which our model is302

imperfect. We assimilate observations of T , U , V and q measured by radiosondes, aircrafts303

and satellites (only U and V) in January 2008. Observation errors and locations come304

from the metadata describing the observations used in the NCEP Reanalysis [Kistler et305

al., 2001]. We estimate each parameter independently, using four initial distributions each306

(Figure 6).307

Experiments of parameter ǫs prefer a range of values centered around 1 · 10−3 m−1
308

without converging to a distinct single value. Experiments with large eddy simulations309

[Siebesma and Cuijpers, 1995] suggest higher values for ǫs with 1.5−2·10−3 m−1, indicating310

a better representation of cloud phenomena on short timescales. In contrast, Tiedtke311

[1989] suggest a lower value of 3 · 10−4 m−1 which is often employed in climate models.312

Järvinen et al. [2010] also estimate ǫs in ECHAM5 with an adaptive MCMC technique,313

evaluating a cost function based on radiative fluxes at TOA. Even though they use a314

substantially different method and a cost function based on other quantities they estimate315

ǫs to 1.5 · 10−3 m−1, close to the upper end of our final distribution of parameter values.316

The most strongly constrained parameter is ǫp, which converges to a value about 8 ·10−5
317

m−1, c.f. the default value of 1·10−4 m−1, regardless of the parameter’s initial distribution.318

Compared to the other parameters, experiments with ǫp yield the most robust evolution.319

This confirms previous results that ǫp is strongly correlated with the available observations.320

However, this parameter is not entirely stable at the end of the experiment period and321

seems to continue to drift towards smaller values.322

By definition of the parameterization, β is a quantity that should be bounded between323

0 m−1 and 1 m−1. Since parameters are transformed to log space, the assimilation can324
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practically produce values larger than 1 m−1. Given this a priori information combined325

with the fact that the estimate exceeds the upper limit at 1 m−1 draws a first conclusion326

that the assimilation of real observations fails for parameter β.327

As is evident from the perfect-model results, parameter γ is poorly constrained by in-situ328

measurements. Different initializations of parameter γ clearly diverge but all estimates329

indicate parameter values at the upper end or above the expert range. We conclude330

that correlations between available real observations and γ do not suffice to constrain or331

estimate this parameter robustly.332

In view of the parameter sensitivity to different observation quantities (Figure 5) we333

repeat experiments for β and γ, neglecting uncorrelated observation types like T in some334

experiments and exclusively assimilating correlated quantities like q in other experiments335

[Kang et al., 2011]. Results with selected observation quantities (not shown) confirm the336

nature of the previous results in which all observation quantities are assimilated.337

6. Do better parameters lead to a more faithful model?

6.1. Tests at short timescales

Though data assimilation assures that the parameter values estimated are optimal, i.e.338

are most consistent with the observations subject to error estimates of both observations339

and parameters, there is no guarantee that a model with updated parameters will have340

lower errors in state variables. Since there is no ’true’ state available to assess the es-341

timation performance as in perfect-model experiments, we are left with calculating the342

root-mean square error (RMSE) between each assimilated observation and the models343

6-hour forecast interpolated to observation space. Assimilating real observations yields344

new and reasonable values for parameters ǫs and β; we neglect the remaining parameters345

D R A F T May 3, 2012, 3:13pm D R A F T



SCHIRBER ET AL.: PARAMETER ESTIMATION IN A GCM X - 19

because the estimate produces a value nearly identical to the default value (ǫp) or diverges346

(γ).347

Figure 7 shows the error distribution, averaged over space and time but resolved in the348

vertical, for the northern hemisphere, the tropics, the southern hemisphere, and a global349

average. We show three observation types and note that error distributions for other350

observation sources are similar. We omit showing RMSE for q since only few observations351

are available which provide an unrepresentative error distribution due to possible sampling352

error. In each subplot we compare three experiments with different parameter estimation353

setups: State estimation with constant default parameter values, simultaneous state and354

parameter estimation for ǫs and β.355

Comparing the default parameter setting with the simulation results applying the esti-356

mated parameter setting, both parameters lead to a decreased RMSE for the zonal and357

meridional wind observation types for different geographical regions. In the southern358

hemisphere however, the assimilation of aircraft meridional wind shows both an error re-359

duction and an error increase, depending on the vertical level. Looking at the RMSE of360

radiosonde temperature, the updated parameters have little effect in the northern hemi-361

sphere and both positive and negative effect in the tropics and the southern hemisphere.362

The overall impact of updated parameters on global average RMSE of 6-hour forecasts363

shows a neutral (ǫs) and a marginal positive (β) effect for radiosonde temperature. Both364

wind components show a clear error reduction with estimated parameters.365

6.2. Tests at climatological timescales

Parameter estimation reduces the short term model forecast error by optimizing fast366

processes. This brings up the question whether results from parameter estimation on367
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short timescales are transferable to climatological timescales: Does the representation of368

the mean climate state also improve with a presumably better representation of physical369

processes?370

We conduct climate simulations with parameter values obtained in section 5 and assess371

the model’s performance. The performance index I2 [Reichler and Kim, 2008] constitutes a372

quantification of the agreement between model and observations in an integrated quantity.373

The index consists of the aggregated error in simulating the observed climatological means374

of relevant climate observables. In contrast to the original composition of observables in375

Reichler and Kim [2008] we use a reduced set of observations, described in [Stevens et al.,376

2012].377

Figure 8 shows I2 for different regions and parameter settings using 1 · 10−3 m−1 for378

ǫs and 1 m−1 for β, keeping ǫp and γ at their default values. The runs with the up-379

dated parameter values do not improve the model’s performance on climatological scales380

compared to the default setting. This can have several reasons: a) The filter tries to381

compensate for systematic model errors by suggesting unrealistic parameter values, b)382

parameters are optimized to give a good 6h forecast, omitting interacting processes and383

feedbacks which can occur on longer timescales, c) the chosen model setup with fixed SST384

and SIC strongly constrains the model’s variability and dominates most components of385

I2, d) looking at the geographical composition of I2 worst performance is achieved in the386

southern hemisphere where the lack of sufficient observations may hinder a correct esti-387

mation of global scalar parameters (however, at short timescales, we found a particular388

improvement in the southern hemisphere), e) model errors in the skill metrics applied for389

NWP and climatological timescales, which comprise different variables, do not correlate.390
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7. Data assimilation and the tuning of climate models

7.1. Results and utility

The perfect-model experiments show that EAKF successfully estimates four cloud391

closure parameters in a comprehensive atmospheric GCM (ECHAM6). Practically392

this means that covariance relations exists between the available synthetic observations393

(U ,V ,T ,q) and the closure parameters. However, not only the amount and error of syn-394

thetic observation but also filter settings like inflation need to be tuned to achieve a395

successful parameter estimation. This exercise has been exploratory and we expect that396

further development of the assimilation system may yield better, if not fundamentally397

different, results.398

Different parameters are estimated with varying degrees of success. Entrainment pa-399

rameters ǫs and ǫp are sufficiently correlated with observations in all experiments and400

are robustly estimated, while estimation of γ succeeds when assuming a perfect model,401

but reveals difficulties when increasing the imperfectness of the model and fails in an402

assimilation framework with real observations. The success with which a parameter can403

be estimated is consistent across the hierarchy of these experiments: Entrainment-rate404

parameter ǫp shows the highest rate of convergence in perfect-model experiments and405

estimation succeeds with real observations, while conversion-rate parameter γ shows the406

lowest rate of convergence and estimation fails with real observations. Using additional ob-407

servation types like precipitation might ameliorate the estimation performance of certain408

parameters. However, critical issues remain such as acquiring trustworthy observations409

and assimilating bounded observations which exhibit a non-Gaussian distribution.410
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We demonstrate in experiments with synthetic observations that different observation411

quantities constrain the parameters to a different extent (Figure 5). Analogously, we412

conduct parameter estimation experiments with real observations in which the different413

observation quantities are assimilated individually (not shown). Independent of the obser-414

vation quantity, both experiments show a similar behavior in the parameter evolution. We415

therefore conclude that the limiting factor for a successful parameter estimation with real416

observations is not the quality of the observations, but rather generic model deficiencies,417

provided that assimilated observations constrain the estimated parameters.418

7.2. Technical issues

Estimation performance of parameter β demonstrates that the assimilation of bounded419

quantities within an EnKF assimilation framework is not an entirely solved issue yet.420

The transformation with a function based on the logarithm alleviates the problem for421

single-bounded quantities but simultaneously introduces non-Gaussian distributions, an422

undesired distribution property for EnKF. Nevertheless, results from logarithmic-based423

transformations of q, ǫp and ǫs prove that the logarithm is a feasible option for single-424

bounded quantities. The overshooting of the upper limit of the double-bounded quantity425

β in Figure 6(c) shows that this aspect of the EnKF data assimilation requires further426

work [e.g. Anderson, 2010]. In a first attempt to find a formulation for double-bounded427

quantities, we apply transformations based on q̂ = tan(q) but experience unstable model428

states in the posterior.429

As a technical aspect of this study we see that expanding the scalar parameter to a430

2D array, updating the parameter spatially and finally averaging is a feasible approach.431

A spatially varying parameter field in the posterior yields potential information about432
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the preferred geographical distribution of parameter values. These maps can help to433

construct and evaluate the feasibility of a spatially varying cloud parameterization in434

weather and climate models. The parameter map also offers the possibility to weight435

or restrict parameters to a certain geographical region, e.g. ǫs should be particularly436

important in trade wind regimes. Furthermore, it is technically easy to expand the scalar437

parameter to a more comprehensive 3D field for the assimilation which might produce438

even better estimation results.439

Estimating parameters in short time-scale parameterizations is computationally more440

efficient than estimating them using quasi-climatological integrations. For example,441

Järvinen et al. [2010] estimate three of the four parameters with a Markov Chain Monte442

Carlo (MCMC) approach which requires 4500 years of model simulations in their case.443

Our method provides a nearly identical result for parameter ǫs with 90 model members444

each integrated 30 days. If the same model resolution is utilized, the EAKF method445

therefore requires only 0.17% of the computational time of MCMC to integrate the model446

in time.447

7.3. Applicability

It remains an open question why better estimates on short timescales lead to a dete-448

riorated performance on climatological timescales. To understand this discrepancy is of449

vital importance for the future work on the estimation of climate model parameters in a450

NWP context. We present possible explanations in section 6.2 but further investigation451

is necessary in order to isolate the dominating reasons.452
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Figure 1. Hierarchy of experimental setups with decreasing degrees of idealization:

Bridging from experiments with synthetic observations on an idealized observation net-

work, assuming a perfect-forecast model, to real observations and a consequently imperfect

model.
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Parameter Acronym Range Default value Unit

Entrainment rate for shallow convection ǫs 3 · 10−4
− 1 · 10−3 3 · 10−4 m−1

Entrainment rate for penetrative convection ǫp 3 · 10−5
− 5 · 10−4 1 · 10−4 m−1

Cloud mass flux above level of non-buoyancy β 0.1-0.3 0.27 m−1

Conversion rate from cloud water to rain γ 1 · 10−4
− 5 · 10−3 4 · 10−4 s−1

Table 1. List of closure parameters with the corresponding default values for ECHAM6

at T31L19. The range of parameter values is chosen by expert elicitation and has been

used in parameter perturbation experiments by Klocke et al. [2011] with ECHAM5.
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Figure 2. Evolution of closure parameters when estimated individually in a ’perfect

model’ experiment assimilating observations on an idealized network. Three different

initial distributions (colors) are shown by the distribution mean (solid lines) and spread

(dashed lines). The parameter values are shown in log space and the dashed black line

displays the default parameter value which was set in the run to generate the synthetic

observations.
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Figure 3. Same as figure 2 but assimilating observations on the realistic observation

network.
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Figure 4. Evolution of closure parameters with different model settings showing the

distribution mean (solid lines) and spread (dashed lines). The parameter values are shown

in log space and the dashed black line displays the default parameter value which was set

in the run to generate the synthetic observations on a homogeneous observing network.

Three different model setups are displayed: perfect model results with single parameter

estimation (black), four parameters estimated simultaneously (red) and four parameters

estimated simultaneously with perturbed gas constant and gravity (purple).
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Figure 5. Sensitivity of closure parameters to different observation quantities, showing

the distribution mean (solid lines) and spread (dashed lines). Parameters are shown in

log space and the dashed black line displays the default parameter value which was set

in the run to generate the synthetic observations on a homogeneous observing network.

Experiments assimilating only U , V , T , and q are shown in purple, grey, blue, and orange,

respectively.
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Figure 6. Evolution of closure parameters with assimilation of real observations showing

the distribution mean (solid lines) and spread (dashed lines) for different initial parameter

distributions (colors). The parameter values are shown in log space and the vertical black

range displays possible parameter values chosen by expert elicitation.
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Figure 7. Error estimate for experiments with real observations for different geograph-

ical regions (rows) and different observation types (columns). Each observation type is

regarded as ’truth’ to calculate the root-mean-square error (RMSE). Each subplot con-

tains a horizontal and time averaged vertical profile with default parameter setting (black),

estimated ǫs (blue) and estimated β (orange). In the course of the experiment parameter

ǫs converges to 1 · 10−4 m−1 and parameter β to 1 m−1.
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Figure 8. Aggregated error of simulated climate runs, using four different parameter

settings. A run with default parameter setting is compared to runs in which ǫs and β

are changed individually and simultaneously. Four geographical regions are shown: the

global average, the northern (NH) and southern hemisphere (SH) and the tropics. A low

I2 value corresponds to a good performance. In contrast to the original composition of

observables, a reduced set of observations is used, described in [Stevens et al., 2012].
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